
 1

Voice over IP Telephony- phone to phone
Ramya Dharshini Chandrasekhar, Janardhan Lavakumar,

Harsha Munikoti, Sajan Peter, David Regal

Abstract

Voice over IP is short for Voice over Internet Protocol
(VoIP). The group implemented the Telephone to
Telephone model. The vision of this project involved
setting up a small VoIP system successfully. In the
future, this system can be the basis for a larger
commercially viable system.

1. Introduction

VoIP can be defined as the ability to make telephone
calls over IP based telephone networks with a suitable
quality of service (QoS) and a significant cost/benefit.
Voice information is sent in digital form in discrete packets,
rather than the traditional circuit switched protocols of the
PSTN. The system being built was tested on two phone
lines. Future projects can build upon this and create a
system that implements a VoIP between any two phones in
a LAN.

1.1 Specifications

• 7-digit dialing service will be provided by the end
product.

• Capability to detect errors, but no error correction
algorithm is implemented. An error in dialing the
number will prompt the user to enter the phone
number again.

• The user is prompted by the service for the final
number to be dialed using a dialtone.

• End-product is an easy-to-use desktop VoIP box
that calls into a server for low-cost phone calls.

1.2 Challenges and problems faced

• Number of specification requirements the
gateway program can fulfill without
modification.

• Passing the second number to the
destination PC

• Incompatibility between LineJack Drivers
downloaded and the ones used by
OpenH323.

• Tracking changes made by multiple
programmers.

• Understanding undocumented source code
of OpenH323 project.

• Scalability issues, since there is only one
PSTN port for one LineJack card.

1.3 Diagram of the system and step-by-step
desription of a remote call.

 Figure. 1 has a detailed diagram
 explaining each step sequentially.

2 Programs and libraries used in the OpenH323
software suite

2.1 OpenPhone program (version 1.8.1)
OpenPhone is a GUI H.323 client program. It is only
available for Windows. The user-friendly interface
has many features. For instance, you can set speed
dial keys. If you’re using a LineJACK or PhoneJACK
card, you can simply press one button and the “#” key
to dial the IP of another computer that accepts H.323
calls.

A H.323 client is basically a way to have PC to PC
audio or video conversations over a LAN or Internet.
You have to know the IP of the PC you want to call

 2

and be by your computer to speak into the
microphone. This program is similar to MS
NetMeeting or Gnomemeeting.

Debugging would be difficult since trace has little
information. When running the program with the
“trace” option on (trace creates a text file for
debugging), OpenPhone provides little information
for insight into what is happening in the program.
However, since OpenPhone worked on the first try,
there is no need for debugging, but it would be nice to
use the trace output file for reference of a working
H.323 call.

2.2 OhPhone program (version 1.3.7)

This program is available for both Windows and Linux.
Also a H.323 client, but command line instead of GUI.
Since it is not a GUI, knowledge of the syntax to run
the program is needed. But compared to pstngw.exe,
it is simple to learn and only a few arguments are
needed to make a call to another computer that
accepts H.323 calls.

2.3 PSTNgw program (version 1.2.2)

Main program used to for any system that will be
making or accepting calls from the PSTN (Public
Switched Telephone Network) and converting the
PSTN call into H.323 format. Even though it has
been claimed that this program should work with
LineJACK, PSTNgw from OpenH323 has not been
guaranteed or tested to work with these cards.

Syntax for this program is cryptic at first, and the
readme.txt (with outdated commands) provides little
help for the argruments that are needed by the
options. If you try to view the help output
(“pstngw.exe –h”) from a MS-DOS shell, it flies off the
top of the screen and you’ll only see the last part of it.
To capture the whole output, at the DOS prompt type:

pstngw.exe –h | MORE > pstnhelp.txt

Open the “pstnhelp.txt” text file that was created in
the current directory and you’ll have the commands

(updated) for the version of PSTNgw you are using.
This can also be used to redirect the screen output as
the PSTNgw program is running.

Even with the up-to-date commands from the help
output, it is hard to determine what the syntax is for a
basic set-up. After looking through the source code
and researching the archives of the OpenH323 mail
list, the syntax for using a LineJACK card (syntax for
Linux is different) was discovered [4]:

-q serialNumberOfLocalLineJACKCard
IPofRemotePCacceptingH323calls –i bindToIP

So to make a call to 128.227.120.35 from
128.227.120.25, use the command:

pstngw.exe -q 355c047e 128.227.120.35 -i
128.227.120.25

This will allow incoming PSTN calls to come into
128.227.120.25, and be transferred to
128.227.120.35 as a H.323 call. Using Notepad or
other text editor, save your frequently used
commands as a .bat file and you can simply
double-click the .bat file to run the PSTNgw program.
Be sure to save the .bat file in the save directory as
the PSTNgw program.

The serial number of the LineJACK is found on the
anti-static wrapper of the bag it came in, or on a white
sticker on the card. If you still can’t find it, go to
Quicknet.com and look for help on their website.

2.4 OpenH323 library (version 1.11.4)

Project OpenH323 starts here. Whenever a program
is developed, this is the library that is used. So all of
the OpenH323 programs require this dll (dynamic link
library), or the equivalent static library.

Looking at the source code, this is where functions for
the LineJACK card and other VoIP cards (LID cards)
are found. For example, the file

 3

openh323/src/ixjwin32.cxx contains the functions for
testing if there is a dial tone, if the phone is ringing, if
PSTN disconnected, etc.

If something is not working for the PSTNgw, it might
be because the library functions for the VoIP cards
are incorrect or there is a driver mismatch.

2.5 PWLib library (version 1.4.8)
PWLib stands for Portable Windows Library. First
started just to provide conversions between Linux
and Windows, it is now used for other purposes such
as providing a way to create and control processes in
the C++ language. For example, whenever
PProcess:create or the like is seen, look to this library
for how the function is working.

Also a dll that is required for the OpenH323 programs
to run. Instead of being a dynamic library, it also can
be compiled as a static library but the appropriate
changes to OpenH323 need to be made.

3 Three Phases for testing the Phonigator
system and schedule

March 21, 2003
I. Test hardware. On site PC to PC call (no

programming):
phone at PC1 - - LAN - - phone at PC2

1. The IP addresses in Windows 98 and the
OpenH323 software were set up.

2. From PC1, PC2 was dialed using touch pad
on the phone or the software.

3. Two phones connected to the computer
through the POTS port. Most of the software
available to do this.

March 28, 2003
II. Test PSTNgw. On site call to PC2 :

Remote call PSTN - - PC1 - - LAN - - PC2
- - phone at PC2

1. The computer that was called (PC1) will pick up
on the PSTN port.

2. Connect to PC2 through the LAN. Using
OpenPhone on PC2, the phone connected to
the POTS line on PC2 will be rung. This is an

on-site call similar to Phase I.
Note: No 2nd number will be entered. PC1 will not
prompt for a 2nd number.

April 11, 2003
III. Test the full system. Hop-off at PC2 :

Remote call PSTN - - PC1 - - LAN - - PC2 - -
PSTN remote phone

1. The computer that was called (PC1) will pick up

on the PSTN port.
2. PC1 prompts for 2nd number with simple dial

tone or beeping.
3. Number recognized by PC1 and converted from

DTMF to numbers stored as an integer, an array,
or a string.

4. Connect to PC2 through the LAN. Note: No
look-up table for find the appropriate PC
corresponding to the 2nd number dialed will be
used. But for a real system and a continuation
of this project, an area code to IP look-up table
is needed.

5. The data representing the 2nd number is sent to
PC2.

6. “Hope off” from IP. PC2 calls the 2nd number
through PSTN.

4 Results (from testing)

Phase I: local call PC1 - - LAN - - local phone on PC2

Status: Works
Means: LineJACK cards are good, LineJACK drivers
were installed correctly, and PCs networked together
properly.

Phase II: PSTN call in - - PC1 - - LAN - - PC2 - - local
phone on PC2.
Status: Successful and complete

Phase III (final phase): PSTN call in - - PC1 - - LAN
- - PC2 - - PSTN call out
Status: Successful and complete.

 4

5 Planned steps for finding a solution and fixing
the problem

Quickest and easiest way to fix the problem is listed
first and then more difficult ways next and so forth.

• Email the OpenH323 mailing list

• Research the internet for examples

• Determine if the correct LineJACK driver from
Quicknet was installed

Problem could be a driver and OpenH323 library
interaction problem. Maybe the c program was
developed for an older driver and does not work with
the newer LineJACK driver from Quicknet’s website.
See if anyone on the OpenH323 mailing list has a
LineJACK driver that works with the PSTNgw
program.
No drivers for LineJACK in Windows 98 are available
from the OpenH323 website and searching on the
internet for a current driver has been unsuccessful.

• Test PSTNgw with a incomnig H.323 call from
OpenPhone or OhPhone

When the system was tested, the team never thought
to invoke an H.323 from OpenPhone to the PSTNgw
and thus working the system the other way around.
This would be picking up where the big red ‘X’ left off
and testing PSTNgw to see if accepts H.323 calls
from another program. Of course, the PSTNgw
program is still in need of programming since it
cannot transfer a H.323 call. But this could help in
seeing if it is failing at two points (transferring and
accepting) or just one point (transferring).

• Under VC++, compile PWLib, OpenH323, and
PSTNgw with no modifications

Just making the source files compile is a project in
itself. Two auxiliary programs are need when
compiling, one called Bison. If compiling the libraries,
it may be wise to switch to “static” libraries since
multiple versions will be made.

• Compile with modifications under VC++

• Test on Linux with lastest LineJACK driver

Driver for the LineJACK card under Linux is available

on the OpenH323 and is most likely more current or
more interoperable with the OpenH323 programs.

6 Testing phase

Testing was done in four different phases to ensure
that a stable system had been VoIP system had been
developed successfully. Each of the four different
stages of testing are described clearly in this section.

6.1 Testing at the Communications Lab - H.323
 call to PSTNgw

From the list of alternatives for fixing the problem, this
was the most promising. The program OpenPhone
would make a H.323 call to the other computer
running PSTNgw that would dial out on the PSTN.
Essentially, this method is testing the system in from
the middle and working out to the PSTN [fig 2]. If it
were a bridge, it would be like starting tof build the
bridge from the middle above the water and working
to land.

OpenPhone could transfer a H.323 call to the
PSTNgw program. PSTNgw would accept the call
and allow a phone number to be dialed out. This
means that the PSTNgw can receive a H.323 call but
cannot generate one.

6.1.2 Theory why PSTNgw call fails on incoming
PSTN calls – central phone system

From looking at the trace for the failed system of
Phase III, the phone system at the University of
Florida (UF) appeared to be a problem. At the lab,
the phone line that the computer is attached to does
have a 7-digit outside number, but it is a switched
phone system because when dialing out, you have to
press “9” to get an outside line. PSTNgw works fine
for calling out; probably because the switching
function of the UF phone network has already taken
place after “9” is pressed. But for incoming calls, the
switching (or signaling) takes place seconds after the
PSTNgw program picks up the call.

According to a professor, UF has a Centrex phone

 5

system. All of the switching functions are done
off-site at the telephone company BellSouth. Looking
into Centrex phone systems, the Direct Inward
Dialing (DID) feature may be the cause of the
problem. DID means someone calling the university
can simple enter a 7-digit number and reach a certain
department, instead of dialing a main number and
entering an extension. Once the call is connected, it
may be trying to off-load the circuits through circuit
switching or software switching. Or it is possible the
Centrex phone system constantly sends signaling for
control of the phone lines that is causing interference.
More information was sought on UF’s telephone
infrastructure, but a technician in UF’s Telecomm
Service Department could not be reached.

Another possibility is the LineJACK cards are too
sensitive. The switching of incoming telephone calls
might be causing it to detect a false “wink.” Basically,
a “wink” is signal detected by the PSTNgw program
when a remote caller hangs up. Or the cause could
be from improper programming of the LineJACK’s
driver. The conclusion was to test the system at a
place where no need to press “9” to get an outside
line, for instance, at any house or ordinary apartment.

6.2 Testing the system at an apartment Theory

6.2.1 Testing PSTNgw to OpenPhone

After setting up the system of two PCs, two monitors
and hub at the apartment, the theory of the UF
switching problem was ready to be tested. At first,
PSTNgw seem to have the same apparent problem
as in the Lab, saying “failed at transferring call” but
this was because of a networking problem. An
Ethernet cable had accidentally been left in the
“uplink” port of the hub. It was left there from when
the system was connected to UF’s network. Since all
of the downloads and updates have been done, we
won’t be using the Internet anymore so no need for
an uplink. Even though the system had to be moved,
using the Lab was helpful because of the high-speed
Internet. From the Lab, we downloaded all the
necessary OpenH323 programs, and updated

Windows 98 in a matter of minutes.

6.2.2 Results of this testing

Once the Ethernet cable was plugged into a valid port
on the hub, the PCs where networked properly and
the PSTNgw call to OpenPhone was successful. All
present were very happy to see Phase II working.

6.3 Testing at a house with two phone lines

6.3.1 Testing PSTNgw to PSTNgw

For notation, the names jack 1 and jack 2 are used as
names for the two phone lines. Testing for the first
night, the whole group of five was present.
Unfortunately, we spent most of the night watching
the black MS-DOS screen full of white text telling us
of failed calls. Unlike a cheering on a sports team,
the computers do not play better even if fans are
present

6.3.2 Results – fail to dial out 90% of the time

On the first night, only 2 successful phone calls where
made in over a couple hours of testing. On a second
night of testing, 3 successful calls were made. The
success rate of 10% is unacceptable.

6.3.3 Testing OpenPhone to PSTNgw

Using OpenPhone to spawn a H.323 call to the
PSTNgw program, it only work about 60% for dialing
out on jack 2 and about 30% for jack 1.

6.3.4 Results – also fails to dial out

When the OpenPhone works, so does the PSTNgw
to PSTNgw so it seems the interference fades and a
window opens up so a streak of successful calls can
be made.

If it is the phone line, and not the PSTNgw program,
then using OpenPhone shouldn't work
either. OpenPhone didn't work, so it is the phone
lines. At the apartment, OpenPhone always worked.

 6

6.3.5 Conclusion – PSTNgw works, but not with
AM interface

Having shown that the phone line is causing the
problem, a new place would be need for testing the
VoIP system. Having the OpenPhone program fail
was good news and gave hope that the system would
work eventually.

Jack 2 seems to accept phone calls better, recognize
digits pressed for the second number better, and
make outgoing calls better than jack 1. Comparing
the noise (sounds like cross-talk), jack 2 has less
than jack 1. To find out if there is noise on the phone
line, press a phone button and listen. Wanting to
figure out more about this background noise heard on
the line we turned on a radio, turned the knob slowly,
listened and found that it is an AM station, 1230
kHz. This channel is ESPN Radio, guys talking about
sports, and we have coined the phrase "sports-talk
cross-talk." There was another AM radio talk show,
female voices, on the lines but it was too faint to
distinguish.

The LineJACKs probably do not have a filter for AM
stations and are sensitive to this noise. This could be
comparable to how the powerline networking
technology, HomePlug, is sensitive to hair dryer or a
vacuum cleaner. The interference wipes out the
DTMF signal and also detects a false “wink” when
dialing out. Both in Gainesville, the house is located
only 10 miles NW from the apartment. There is no
interference at the apartment. Maybe the layout of
the phone lines at the house create act as an antenna
tuned for these AM frequencies.

6.4 Testing at apartment with two phone lines

An additional phone line was installed at the
apartment. Both of the phone lines do not have any
noise detectable by the human ear.

6.4.1 Testing PSTNgw to PSTNgw

A cell phone was used to make calls into the

apartment. For the second number, only 10-digits
(e.g. 333 432-1111) can be entered so only local calls
could be made.

6.4.2 Results – success

If the proper steps are followed for using the program,
both instances of PSTNgw will remain stable on the
two PCs and calls can be both ways. This is good to
see it is truly bidirectional.
 Even though the person called could barely
hear the caller, the person called could be heard well.
Maybe a PSTNgw options for volume control exists,
but we do not know of one. Maybe the echo
cancellation option has something to do with the
volume being soft.
 Even though the person called could barely
hear the caller, the person called could be heard well.
Maybe a PSTNgw options for volume control exists,
but we do not know of one. Maybe the echo
cancellation option has something to do with the
volume being soft.

7. Future Plans

This project was completed successfully setting up a
base where a commercially viable VoIP system could
be developed in the future. Here are some guidelines
which would help take this project to the next level.

7.1 Use this VoIP system to test different codecs

The LineJACK card has many different voice
compression codecs that can be used. Testing
different codecs the quality vs. bandwidth can be
compared on a live system.

7.2 Purchase credit card and test internet
 switchboard

A system available from Quicknet, an account can be
set up so an H.323 call can be routed to just about
anywhere in the world. Using the LineJACK,
PhoneJACK, or even a microphone and speakers,
H.323 calls can be placed to this server program and
routed to different countries. Like a phone card,

 7

minutes are purchased but at lower rates than a
phone company.

7.3 Converting to a SIP-based system

The system uses SIP as the signaling protocol for the setup
and tear-down of calls (over the IP network). Calls
received from and transmitted to the PSTN are subjected to
translation from H.323 to SIP and SIP to H.323 signaling
respectively. The actual conversation happens over a RTP
(Real-time Transport Protocol) path in the network,
between the two users.

Each SIP UA is also configured as a H.323 terminal to
accept calls from or return calls to the PSTN via the
LineJack. Each terminal, as mentioned above runs a
H.323-SIP translator or gateway application, and also a
H.323-based PSTN gateway application. Open Source
applications like “siph323csgw” for the SIP-H.323
gateway and “PSTNgw” for the PSTN-H.323 gateway
may be used.

A call is initiated when a user dials the number of the
H.323 terminal. The H.323-PSTN gateway server
application prompts the user to enter the phone number of
the call’s destination. When the user enters the same, the
H.323-SIP gateway application translates the information
into SIP format and the SIP UA1 sends out and SIP request
(INVITE) intended for UA2, to the RS. The RS sends the
directory information about UA2 to UA1 through another
SIP message, and using this information, UA1 generates
an SIP call to (the SIP URL of) UA2. From here on a
reversal of the process described above causes the user at
UA2/H.323 terminal 2 to receive the call from UA1, and
when it is accepted, the call is setup.

This discussion only describes one possible way of
implementing our system, which still needs to be tested.
There may be other methods, depending on other needs.
Regardless, the incorporation of SIP signaling in our
system would make it more efficient and versatile while
keeping all the features that we have on it currently

8. Conclusion

As stated originally, the goal of this project was to

develop a successful telephone-to-telephone VoIP
model, that could be developed in the future into a
commercial venture. This project team has
successfully built the desired model, and future
teams can now take this once step further to make ita
commercial success.

9. Acknowledgements
The team acknowledges the efforts and contribution of Dr.
Haniph Latchman in providing the necessary infrastructure,
lab facilities, and guidance. The group is thankful to
Karthik Tripathi for making himself available to the group
for assistance with programming-related issues.

References
1. http://www.tldp.org/HOWTO/VoIP-HOWTO-

5.html#ss5.1
2. http://www.linuxjournal.com/article.php?sid=

5941
3. http://www.voicetronix.com
4. http://ww.quicknet.net
5. http://www.vovida.org/

 8

 9

