The theorem is proven for the composition GF of linear transformations F: plane into space, and G: space into space. (Proofs for linear transformations between other linear objects are similar.) The most general forms for these linear transformations are:
F(x,y) = (α1x + β1y,   α2x + β2y,   α3x + β3y)      and      G(x,y,z) = (λ1x + σ1y + ω1z,   λ2x + σ2y + ω2z,   λ3x + σ3y + ω3z)
To form the composistion GF replace every black x in G by 1x + β1y), replace every black y in G by 2x + β2y), replace every black z in G by 3x + β3y) to get
GF(x,y)

             =

  (λ11x + β1y) + σ12x + β2y) + ω13x + β3y),              [first or x- coordinate of the image of GF(x,y)]
     λ21x + β1y) + σ22x + β2y) + ω23x + β3y),              [second or y-coordinate of the image of GF(x,y)]
       λ31x + β1y) + σ32x + β2y) + ω33x + β3y))              [third or z-coordinate of the image of GF(x,y)]

             =

  ((α1λ1 + α2σ1 + α3ω1)x + (β1λ1 + β2σ1 + β3ω1)y,              [first or x- coordinate of the image of GF(x,y)]
    (α1λ2 + α2σ2 + α3ω2)x + (β1λ2 + β2σ2 + β3ω2)y,              [second or y- coordinate of the image of GF(x,y)]
      (α1λ3 + α2σ3 + α3ω3)x + (β1λ3 + β2σ3 + β3ω3)y)              [second or y- coordinate of the image of GF(x,y)]